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Abstract – 

As construction projects resume worldwide and 

workers return to the job site, the possibility of 

transmitting the Covid-19 could be added to the 

extensive list of risks confronting workers in the 

construction sites; thus, the workers need to work 

alone in an assigned activity. Many workers are 

already working alone in the construction sites, such 

as utility workers, repair technicians, teleworkers, 

operators, and drivers. Lone workers in construction 

are subjected to greater safety risks compared with 

those working alongside others. Considering the 

accidents faced by lone workers, it’s less likely that 

another person would be there to aid them - and if 

they don’t get treatment quickly enough, serious 

injuries might prove deadly. Currently, the 

construction sites depend on physical inspections to 

the construction sites and manual observation of 

video streams generated through close circuit 

television (CCTV). To solve this issue, this research 

work presents an automated deep learning-based fall 

detection system of a lone worker to provide 

information of severe situations and help the workers 

in their golden time. A diverse dataset of multiple 

scenarios having workers with the excavator, forklift, 

ladder, and mobile scaffold is established, and a deep 

learning algorithm has been trained to validate the 

concept. The developed system is expected to reduce 

the efforts being made in manual inspection, enhance 

the timely access of the due aid from co-workers and 

supervisors, which is more easily obtainable in non-

lone working situations. 

Keywords – 

      Deep Learning; Covid-19; Construction Hazards; 

Worker Safety; Lone Person Fall 

1 Introduction 

Despite limited access to timely assistance, lone 

workers independently cope with potentially risky 

situations such as extreme weather conditions, tools, and 

equipment failure. If alone the injured worker receives 

aid promptly, the injuries could turn out to be fatal, 

among other accidents in a construction job site. Fall 

accidents are common and severe accidents that can 

happen anywhere on a construction site. Even if workers 

fall from a low height (1m or 2m), it frequently results in 

significant mishaps, probably death.  

Substantial efforts are being made to significantly 

reduce fall accidents in Korean construction job sites and 

enhance construction safety management. The extensive 

efforts include quality safety education, advanced safety 

training, high-elevation work management rules, and the 

use of fall prevention protective equipment. As per the 

Korea Occupational Safety and Health Agency 

(KOSHA)’s industrial accidents and analysis (2009 to 

2017), fall accidents in the construction industry 

represent a considerable share of 47.7% to 52.1% [1]. 

This tendency was also observed in various countries, 

including the United States [2], Singapore [3], Norway 

[4], and Hong Kong [5].  

Consequently, falls from great heights have received 

extensive research attention and have become an 

essential topic in the construction industry. Construction 

workers are prone to weariness, drowsiness, and loss of 

balance, increasing safety risks and fall accidents due to 

their severe physical needs and irregular lifestyle (e.g., 

alcohol, misuse, night shifts, and insufficient rest 

interval). However, most of the studies focused on safety 

facilities and PPE inspection; this only helps reduce the 

severity of damages rather than providing quick aid and 

timely assistance when a fall accident happens. Therefore, 

this research work presents the inevitable approach to 

detecting a person in falling conditions, which will 

ultimately help employers automatically monitor lone 

workers and respond timely to any falling accidents.   

The current stage of computer vision application in 

the construction industry is covered in Section 2. Section-

3 describes the dataset and model development. Section-

4  includes evaluating the developed model using the 
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performance indicators to validate the feasibility and 

practicality of the proposed system's for actual 

implementation. A conclusion is included at the end of 

the work. 

2 Literature Review 

Despite the efforts of researchers, safety specialists, 

and strict enforcement of safety rules, construction 

accidents, and fatalities have not appreciably decreased. 

Falls are a significant public health concern worldwide 

and one of the leading causes of severe and fatal injuries 

among construction workers. Researchers and experts in 

construction safety and health management have devoted 

tremendous efforts to prevent falls [6]. Proactive and 

passive strategies such as safety training education and 

preventive measures on safety accident analysis are 

developed to prevent and minimize the severe injuries 

generated from FFH [7]. For instance, using accident 

records and data from routine safety inspections to 

identify factors contributing to deadly occupational falls 

[7]. Fixed safety equipment (e.g., guardrails and opening 

covers), fall arrest systems (e.g., full-body harness), and 

travel restraint systems (e.g., belts); are FFH preventative 

measures generated from an examination of accident 

data.  However, the social distancing regulations 

imposed by governments worldwide lead many workers 

to deal with assigned activity solely, and the construction 

workers already working alone are comparatively facing 

a greater risk of injuries. Considering the accidents faced 

by lone workers, it’s less likely that another person would 

be there to aid them - and if they don’t get treatment 

quickly enough, serious injuries could become a fatality. 

Researchers have leveraged recent technological 

advancements to automate safety management 

procedures. Until yet, very little attention has been 

devoted to protecting the lone worker accidents 

generated through FFH. Sensor-based technology has 

garnered a lot of attention in recent decades for 

monitoring PPEs worn by construction workers [8,9], 

such as activity recognition [10,11] and safety of the 

construction workers [9,12–16]. In particular, most FFH 

prevention studies used sensors to detect risky behaviour 

to avoid FFH accidents by analyzing workers' motions, 

body positions, and walking patterns [17–19]. 

Furthermore, many researchers have developed methods 

to detect workers' actions and body postures using 

wearable sensors' signals [10,20]. Yang et al. [10]  Yang 

et al. [10] investigated workers' behavior patterns from 

three angles:  while conducting the lab experiment, they 

attached the sensor to the workers' waist and recorded 

acceleration and angular velocity.  

The system's accuracy in predicting unsafe behavior, 

was 98.6% and 60.9 percent, respectively. Owing to 

construction site complexity, the prediction model had a 

hard time distinguishing behaviors related to moves that 

weren't in the training data. Furthermore, most sensor-

based monitoring devices possess issues concerning 

noise, precision, loss, and errors in the data they acquire. 

Apart, In the recent decade, several researchers have 

been attracted to use computer vision in their fields, such 

as the construction industry for worker safety monitoring, 

progress monitoring, and worker action recognition to 

automate the manual procedures at the construction site. 

Recently researchers have been focusing on computer-

vision-based safety monitoring of the worker [6,21–25]. 

A growing number of recent studies in the construction 

industry have focused on using CNN-based methods, 

such as Faster R-CNN, R-FCN, SSD, Retinanet, 

YOLOv3 for detecting workers, faces to recognize non-

certified persons, non-hardhat-use, equipment for 

activity recognition, guardrails, PPE for steeplejacks 

[6,24–26]. Fang et al. [27] developed a deep learning-

based approach to detect non-hardhat users in a 

construction site. Fang et al. [6] developed an automated 

approach to detect safety harnesses to prevent heights 

falling using double-layer CNN. Likewise, Ding et al. [28] 

presented convolution neural networks (CNN) and long 

short-term memory (LSTM) that automatically identify 

unsafe behavior by detecting humans climbing on a 

ladder. Khan et al. [23] proposed Mask R-CNN-based 

algorithm to monitor the worker's safety while working 

on the mobile scaffolding. Weili Fang et al. [29] used 

Mask R-CNN-based algorithm to recognize the unsafe 

behavior of construction workers traversing structural 

support during the construction. Nath et al. [30] 

developed three Deep learning (DL) models on YOLO 

architecture to detect PPEs.  

Despite these efforts being made to integrate the 

computer vision for an intelligent construction site, 

considerable efforts are required to extend the computer 

vision application in the construction industry. Currently, 

the construction sites around the globe is recommencing 

again, and the workers are joining back the construction 

job site. The possibility of transmitting the Covid-19 

could be another risk confronting by the workers in the 

construction sites; thus, the workers need to work solely 

or on a distance from another worker to complete the 

given tasks. Moreover, many workers are already 

working solely in the construction sites, such as utility 

workers, repair technicians, teleworkers, operators, and 

drivers. As we all know, lone workers in construction are 

subjected to greater safety risks than those working 

alongside others. Contemplating the lone worker's 

mishaps or severe accidents, the probability of helping 

another person would be less in that situation - and if they 

don’t get first-aid quick enough in their golden times, 

these serious injuries might result in death. Currently, the 

construction sites depend on physical inspections to the 

construction sites and manual observation of video 

streams generated through close circuit television 
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(CCTV). Correspondingly, this research study has tried 

to put efforts on the appropriate and exceptional use of 

the provided rich information generated through digital 

data. Thus, this research proposed a deep learning-based 

worker’s fall detection system, enhancing timely access 

to due aid from co-workers and supervisors. 

3 System Development 

This section includes a comprehensive discussion on 

dataset Preparation, deep learning model selection, and 

Model Training. The dataset preparation part focuses on 

establishing scenarios, digital data collection, cleaning, 

and finalizing the data for ultimate deep learning. The 

appropriateness and feasibility of the deep learning 

model specific to lone person detection are stated under 

the subsection (deep learning model selection). The 

model training section stipulates the specification 

adopted during the training process of the deep learning 

model. 

3.1 Dataset Preparation 

A considerable amount of digital image data with diverse 

patterns is needed to train a vision intelligence-based 

detection algorithm. As vision intelligence technologies 

emerged recently in the construction industries, 

collecting labeled datasets from open-source websites 

remains problematic. Therefore, images and multiple 

videos for lone person detection with enough variations 

considering scenarios with ladder, forklift, Excavator, 

and Mobile Scaffolding have been recorded at the Korean 

scaffolding institute in Seoul, Korea. Random frames 

were extracted using Fast Forward MPEG (FFmpeg) tool 

in python. FFmpeg is an open-source software package 

that comprises many libraries dealing with audio, video, 

and other multimedia files. The inappropriate images 

such as (irrelevant) and duplicate images from the same 

scenes were removed from the dataset during the dataset 

cleaning process.  

The decisive image data of 799 images were uploaded to 

the roboflow platform for pre-processing and labelling. 

A total of 2037 annotations were labelled across the six 

classes in the dataset (1) Person Falling, (2) Worker, (3) 

Ladder, (4) Forklift, (5) Excavator, and (6) Mobile 

Scaffolding. The dataset was separated in the following 

ratio: 91:4:5. As a result, 1857 images from the training 

set, 80 images from the validation set, and 100 images 

from the test set were gathered for further experiment.  

As mentioned in the literature section, the deep learning 

models required large enough data for training to 

correctly identify and recognize the interested objects. 

The data augmentation techniques have been utilized to 

increase the image data. Apart from dataset maximization, 

data augmentation techniques increase the accuracy of 

deep learning models. According to a conducted 

experiment [31], a deep learning-based model with image 

augmentation outperforms a deep learning model without 

image augmentation in terms of training loss and 

accuracy and validation loss and accuracy for image 

classification tasks. In the augmentation process, we have 

performed flip (Horizontal), shear (15°), hue (between -

25 to +25), and brightness (between -19 to +19) on the 

training set to increase the dataset. After the 

augmentation process, the total number of image data is 

increased to 2037 images. The process of labeling the 

dataset is exhibited in the below figure (see Figure 1). 

 

Figure 1. Dataset establishment in Roboflow 

platform 

3.2 Deep learning Model Selection 

In recent years, cutting-edge technology has been used in 

computer vision applications to detect resources. The 

previous efforts reported two primary categories of 

object detectors: single-stage object detectors and 

double-stage object detectors. Depending on the problem 

to be solved, one could choose among them (single-stage 

or double-stage object detector). The main difference 

between a single-stage and a two-stage object detector is 

that a single-stage object detector's output can be 

acquired after the first CNN (Convolution Neural 

Network) operation. The high-score area proposals 

obtained from the first-stage CNN are typically passed to 

the second-stage CNN for the final prediction in the case 

of the double-stage object detector. 

The inference times of single-stage and double-stage 

detectors could be defined as:  

Tone = T1
st and T two = T1

st + mT2
nd 

The above equation defines m as the number of area 

recommendations with a confidence score greater than a 

threshold. In the case of real-time object detection, the 

single-stage object detectors are preferred to use because 

the inference time of the single-stage detectors is constant 

but for the double-stage object detectors are variable [32]. 

Consequently, in our case, a real-time object detection of 

the lone falling person on the construction site is 

significant to report and assist them as soon as convenient. 
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Therefore, this research work adopted a recently emerged 

single-stage object detector type named as Scaled-

YOLOv4 algorithm. The model scaling technique is an 

important approach for effectively detecting objects with 

significant accuracy and real-time recognition on 

numerous kinds of devices, such as embed devices, while 

minimizing computing resources. The most common 

model scaling techniques are the depth (convolutional 

layers’ numbers in a CNN) and width (convolutional 

filters’ numbers in a convolutional layer) of the 

architecture’s backbone. A deep learning-based 

algorithm (scaled YOLOV4) for object detection was 

recently published as an addition to the pool of detection 

techniques integrating scaling techniques. This scaling 

technique showed significance in terms of performance 

on small and large networks without compromising the 

model's performance [32].  

The authors of the Scaled YOLOv4 manuscript have 

designed a different version of the Scaled YOLOv4 for 

low-end GPU, and high-end GPU, and the general GPU. 

The YOLOv4-CSP is re-designed of the original 

YOLOv4 for the general GPUs with high performance 

and accuracy. The authors designed YOLOv4-tiny with 

a simpler structure and reduced parameters to make it 

feasible for the development on mobile and other edge 

devices (Andriod, etc.). YOLOv4-large is designed for 

the high-end GPUs such as cloud servers, the main goal 

of proposing this is to achieve high accuracy while 

minimizing training time and achieving efficient 

performance. A fully CSP-ized model has been created 

named as YOLOv4-P5 and scaled it up to YOLOv4-P6 

and YOLOv4-P7 [32]. The structure of YOLOv4-P5, 

YOLOv4-P6, and YOLOv4-P7 is depicted in Figure 2. 

The authors of the Scaled YOLOv4 have performed the 

compound scaling of the architecture backbone on size 

input, stage, and width scaling. The inference time is used 

as a constraint for the additional width scaling of the 

architecture backbone. The authors conducted 

experiments on the MSCOCO-2017 dataset to validate 

the proposed scaled-YOLOv4-large, and the results show 

that the YOLOv4-P6 can achieve real-time performance 

at 30 frames per second (when the width scaling factor is 

set to 1) and the YOLOv4-P7 can achieve the real-time 

performance of 16 frames per second (When scaling 

factor of the width is 1.25) [32]. As a Result, scaled 

YOLOv4-large is selected to detect lone person falls on 

a construction. 

3.3 Model Training 

The experiment was conducted using an open-source 

Scaled YOLOv4 GitHub repository. The required 

repository of YOLOv4 was clone to the colab 

environment, all the dependencies, such as the torch mish 

activation function for Cuda, were imported. The training 

of the model is performed using Intel Core i7 9th 

generation with NVIDIA GeForce RTX 2080Ti. The 

hyper-parameters of the Scaled YOLOv4-large can be 

seen in the given Table1. To perform detection, we have 

modified hyper-parameters in the configuration file so 

that the step size is set to 9600,10800, the learning rate to 

0.0026. The momentum and the weight decay were set 

0.949 and 0.0005, respectively. Maximum batches were 

Figure 2 System architecture of YOLOv4-large, with YOLOv4-P5, YOLOv4-P6, and YOLOv4-P7 [32] 
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set to 12000, and the epochs were set to 1000. An 

iteration indicates a specific change to a model's weights, 

while an epoch, on the other hand, determines one 

iteration across the whole dataset. 

Table 1. Parameters of Scaled YOLOV4 

Parameters Values 

Input Size 416 x 416 

Batch Size 16 

Learning Rate 0.00261 

Momentum 0.949 

Decay 0.0005 

Iterations 1000 

Classes 6 

4 Results and Evaluation 

The feasibility of the trained lone person fall detection 

model is tested with the different performance indicators.  

The model test and evaluation are performed on test and 

validation dataset. The Figure 3 reveals the correctly 

detected results of the lone person falls. The developed 

model successfully detected all the objects in a given 

testing and validation dataset. The efficacy of the trained 

model is quantified using mean average precision (mAP), 

a single numerical number that indicates the 

effectiveness of the entire system in object identification 

(and information retrieval). Other evaluation matrices 

such as Precision, Recall, are also used to check the 

performance of the developed system.  

 

Figure 3. Detected Results of the Trained Model 

4.1 Precision 

The number of true positives (𝑇𝑝) divided by the 

number of false positives (𝐹𝑝)  plus the number of true 

positives (𝑇𝑝)  makes precision (P) value of the model. 

False positives ( 𝐹𝑝 ) are instances where the model 

mistakenly identifies something as positive when it is 

truly negative. Precision actually measures how many of 

the predicted positives were truly positive. It is 

mathematically denoted as follows: 

𝑃 =
𝑇𝑝

𝐹𝑝 + 𝑇𝑝
 (1) 

The below figure (see Figure 4.) shows the precision 

(48.5%) of our proposed model. As we detect the person 

falling, the precision and recall could be adjusted by 

selecting an optimum point on the precision-recall curve. 

 

Figure 4. Graphical representation of precision 

matrix 

4.2  Recall 

A recall expresses the capacity to discover all relevant 

instances in a test dataset. Recall (R) measures how many 

true positives were successfully found. Simply, the 

number of true positives (𝑇𝑝) is divided by the number 

of false negatives (𝐹𝑁)  plus true positives (𝑇𝑝) . The 

mathematical form of recall can be written as: 

 

𝑅 =
𝑇𝑝

𝐹𝑁 + 𝑇𝑝
 (2) 

Recall (83%) of our proposed scaled-YOLOV4 based 

model is depicted in the Figure 5. 

4.3 F1-Score 

The F1-score is a metric for how accurate a model 

performs on a given test data. It is commonly applied 

to examine binary classification algorithms that 

categorize examples as either "negative." or 

"positive". The F-score, which is defined as the 
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harmonic mean of the model's recall and accuracy, is 

an average of combining the recall and precision of 

the model. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2.
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) .  (𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  + (𝑅𝑒𝑐𝑎𝑙𝑙)
 (3) 

The F1-score observed during the experiment was 

60.82%. 

 

Figure 5. Graphical representation of recall 

4.4 Mean Average Precision  

The average of Average Precision (AP) is called mAP 

(mean average precision); mAP allows you to 

demonstrate the overall system's usefulness as a single 

numerical value. The following Figure 6 shows the mAP 

calculated when the Intersection of Union IoU was set to 

0.5 and the mean average precision (mAP) obtained in 

this case was 72.5%. 

 

Figure 6. Graphical representation of mAP at 0.5 

The following picture shows the mAP calculated on 

the different IoU thresholds ranging between 0.5 to 0.95 

and achieved 37%mAP (see Figure 7.). 

 

Figure 7. Graphical representation of mAP at 0.5 

to 0.95 

5 Conclusion 

This research work introduced, developed, and 

evaluated a deep learning-based system for lone person 

detection on scaled-YOLOv4 architecture. For instance, 

if an alone worker faces any fall accidents on the 

construction site, the system will automatically recognize 

the falling person. To develop the proposed system, 

diverse digital image data has been gathered with 

different scenarios. The designed deep learning-based 

lone person fall detection system was successfully 

implemented on the test dataset. The detection model's 

quantitative data indicated a mean average precision 

(mAP) of 72.50 percent, precision of 47.5 percent, recall 

of 83 percent, and F1-score of 60.82 percent. According 

to the findings, the presented system had good accuracy 

in detecting person falling conditions. As a result, it is 

expected that this technique will have a major impact on 

the automated detection of a lone person fall among 

construction workers. It is also anticipated that the 

construction industry could take advantage of the system, 

particularly in the current scenario of COVID-19. 
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